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is generally interpreted as a local geometric error estimate. On the contrary, the latter is
preferred when studying approximation errors for PDEs. It generally involves non local
error contributions. Consequently, a full and strong coupling between both is hard to
achieve due to this apparent incompatibility. This paper shows how to achieve this cou-
pling in three steps.

First, a new a priori error estimate is proved in a formal framework adapted to goal-ori-
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Metric-based mesh adaptation ented mesh adaptation for output functionals. This estimate is based on a careful analysis
Steady compressible Euler equations of the contributions of the implicit error and of the interpolation error. Second, the error
A priori error estimate estimate is applied to the set of steady compressible Euler equations which are solved
Adjoint by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is

derived. It involves the interpolation error of the Euler fluxes weighted by the gradient
of the adjoint state associated with the observed functional. Third, rewritten in the contin-
uous mesh framework, the previous estimate is minimized on the set of continuous meshes
thanks to a calculus of variations. The optimal continuous mesh is then derived analyti-
cally. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a
numerical point of view, this method is completely automatic, intrinsically anisotropic,
and does not depend on any a priori choice of variables to perform the adaptation.
3D examples of steady flows around supersonic and transsonic jets are presented to val-
idate the current approach and to demonstrate its efficiency.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

When dealing with real-life CFD problems, mesh adaptation is recognized as a complementary approach to high-order
schemes classically used to solve the problem at hand. This interest for mesh adaptation relies on its ability to approach
the asymptotic convergence and, therefore, to obtain more easily an accurate prediction for complex flows. Among mesh
adaptation methods, anisotropic unstructured adaptation is of paramount influence on the accuracy of many CFD predic-
tions. This technique allows (i) to substantially reduce the number of degrees of freedom, thus impacting favorably the
cpu time, (ii) to reduce (optimize) the numerical scheme dissipation by automatically taking into account the anisotropy
of the physical phenomena inside the mesh [43], and (iii) to access to high order asymptotic convergence, see for instance
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[15,43]. So far, anisotropic features are mainly deduced from an interpolation error estimate. Consequently, a Hessian-like
anisotropic approach does not directly apply to the goal-oriented mesh adaptation methods that take into account both
the solution and the PDE in the error estimation. As the objective of this paper is to couple both approaches, we briefly recall
their inherent formulations and their intrinsic properties.

1.1. State of the art

A recent family of methods, often referred to as metric analysis methods, or Hessian-based methods have shown a very fer-
tile development, from the pioneering works in [12,21]. Thanks to recent formalisms, see for instance [42], these ideas
turned into a clean set of functional analysis problematics relying on an ideal representation of the interpolation error
and of a mesh. Getting rid of error iso-distribution and prefering L” error minimization allow to take into account disconti-
nuities with higher-order convergence [16,43]. This theory combines perfectly with unstructured mesh generation [25,27].
Addressed applications are either steady or unsteady [3,23,5]. Metric-based mesh adaptation efficiency and genericity have
been proved by many successful applications for 3D complex problems [3,11,18,19,23,45,50,51]. However, these methods
are limited to the minimization of some interpolation errors for some solution fields. If for many applications, this simpli-
fying standpoint is an advantage, there are also many applications where Hessian-based adaptation is far from optimal
regarding the way the degrees of freedom are distributed in the computational domain. Indeed, metric-based methods
aim at controlling the interpolation error but this goal is not often so close to the objective that consists in obtaining the best
solution of a PDE. This is particularly true in many engineering applications where a specific functional needs to be accu-
rately evaluated: lift, drag, heat flux, pressure field, etc.

In contrast to the previous set of methods, the formulation of goal-oriented mesh adaptation, [28,29,47,52,53], has
brought many improvements in the formulation and the resolution of mesh adaptation for PDE approximations. Let us write
the continuous PDE as:

¥(w) =0, (M
and the discrete one as:

Yh(wy) = 0. 2)
The objective of goal-oriented mesh adaptation is different from the one of deriving the optimal mesh to control the global
approximation error |[w — wy|, see [9,54] for a posteriori error estimate devoted to that latter task. Indeed, we focus on deriv-
ing the best mesh to observe a given functional j depending of the solution w. To this end, we examine how to control the
approximation error of the functional: j(w) — j(w;). Assuming that the functional j is enough regular to be observed through
its Jacobian g we simplify it as follows:

jw) = (g.w).

We also assume that there is no discrete error evaluation on j, this means that j,(wy) = j(wj,). On this basis, we seek for the
mesh H which gives the smallest error for the evaluation of j from the solution field wj:

m#n‘(gwh) —(gW)‘ (3)

where w and w;, verify (constraint) state Egs. (1) and (2), respectively. The initial mesh adaptation problem is recast with Eq.
(3) as an optimization problem. In order to go a step forward in the analysis, we need to implicitly take into account Con-
straints (1) and (2) in Eq. (3). The initial approximation error on the cost functional |(g, w,) — (g, w)| can be simplified as a
local error thanks to the introduction of the adjoint state:

-1
(& wp—w) =~ (g, (%) lI’(Wh)> = (W, ¥(wy)), (4)

where the adjoint state w* is solution of:

((G) wv) = ew.

In practice, the exact adjoint w* is not available. By introducing an approximate adjoint w;, we get:

(8, Wh — W) ~ (W}, ¥(Wh)). (5)
The right-hand side is a spatial integral the integrand of which can be used to decide where to refine the mesh. The iso-dis-
tribution of the error can be approximated by refining the mesh according to a tolerance, as in [9]. In [31], it is proposed to
use this right-hand side as a correction that importantly improves the quality (in particular the convergence order) of the
approximation of j by setting:

scorrected

= (& wWn) + (Wj, P(Wh)).
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However, by substituting w* by w;, we introduce an error in O(w;, — w*), which results in being the main error term when we
use j°™ In [52,53], it is proposed to keep the corrector and to adapt the mesh to this higher-order error term, i.e.,:

jcorrectEd i~ (WI*1 —w, 5’/(Wh))7

or equivalently:

corrected & W_—w . % *W*
J = h, & ow h |-

In order to evaluate numerically these terms, the authors chose to approach these approximation errors by interpolation er-
rors, by computing differences between the linear representation LZ /> and a quadratic representation QZ /2 reconstructed on a
finer mesh:

. T I hoos
Wy = W™ = Ly Wy — QoW

h h
Wh — W~ Ly yWp — Qp ), W

1.2. Our approach

In our point of view, metric analysis and goal-oriented analysis are complementary. Indeed, a metric-based method
specifies the object of our search through an accurate description of the ideal mesh while a goal-oriented method spec-
ifies precisely the purpose of the search in terms of which error will be reduced. It is then very motivating to seek for a
combination of both methods, with the hope of obtaining a metric-based specification of the best mesh for reducing the
error committed on a target functional. A few works address this purpose. In [53], an anisotropic step relying on the
Hessian of the Mach number is introduced into the a posteriori estimate. In [48], an ad hoc formula gives a better impact
to the anisotropic component.

This paper presents a different contribution to the combination of both methods. This will be achieved from some
considerations: (i) a reliable continuous mesh model, (ii) an a priori estimate and (iii) specific numerical schemes allow-
ing approximations of ¥,(w)— ¥(w). These three items differ from classical approaches of goal-oriented mesh
adaptation.

The first key point of this work is to use a metric-based parameterization of meshes. This means to work in a con-
tinuous (non-discrete) formulation. We shall follow the continuous interpolation analysis proposed in [42]. Metric-
based methods usually use an interpolation error, the deviation between the exact solution and its linear interpolation
on the mesh. This assumes the knowledge of the solution, i.e., this is an a priori standpoint. Further, metric-based
methods express an optimal metric as a function of this exact solution. This reinforce the a priori feature of the
approach.

In contrast, goal-oriented methods are generally envisaged from an a posteriori standpoint, we refer to [6,9,19,31,46,54].
Following this option, we would start on the basis of errors committed on an existing mesh. It seems then not feasible to
transform this information into the specification of the optimal ideal mesh. Moreover, mesh refinement scheme based on
a posteriori estimations depends on an equi-distribution principle by refining elements where the error is greater than a gi-
ven threshold. Such process is thus isotropic by nature. Consequently, it does not provide an optimal distribution of the de-
grees of freedom with respect to the accuracy. Indeed, this process is equivalent to a local optimization so that a global
minimizer is hard to achieve. Fortunately, goal-oriented methods do not need to be systematically associated with an a pos-
teriori analysis.

Now, according to, for instance, [8], a priori analysis can bring many useful informations. Anisotropy is often one of these
informations [20]. Further, the goal-oriented error can also be easily expressed by an a priori analysis, as we shall demon-
strate in the sequel, and this is second key point of this work.

The third key point results from working with a numerical scheme that expresses the difference ¥,(w) — ¥(w) in term of
interpolation errors. This can be done in a straightforward way by considering finite element variational formulations.

1.3. Outline

The theoretical abstract framework is introduced in Section 2. Within this framework, a first a priori goal-oriented error
estimate, Eq. (11), is derived. Its application to the compressible Euler equations is then studied in Section 3 for a class of
specific Galerkin-equivalent numerical schemes. From this study, a generic anisotropic error estimate, Eq. (16), is ex-
pressed. The estimate is then minimized globally on the abstract space of continuous meshes, Section 4. Finally, the
numerical part in Section 6 gives some details on the main modifications of the adaptive loop as compared to classical
Hessian-based mesh adaptation. The pratical optimal metric field minimizing the goal-oriented error estimate is then
exhibited, Eq. (31). Several 3D detailed examples conclude this last section by providing a numerical validation of the
theory.
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2. A more accurate non-linear error analysis
2.1. Assumptions and definitions

Let V be a space of functions (at least a Banach space). We write the state equation under a variational statement:
weV, VpeV, (P(w),p) =0, (6)

where the operator (,) holds for a V7 x V product, V' is the topological dual of V and w is the solution of this equation. Symbol
¥ holds for a functional that is linear with respect to test function ¢ but a priori non linear with respect to w. The continuous
adjoint w* is solution of:

oY

w e Va Vl// € V7 (% (W)l'D?WX) = (ga l//) (7)

where g is the Jacobian of a given functional j. Let V}, be a subspace of V = V N ¢° of finite dimention N, we write the discrete
state equation as follows:

wpeVy, Vo,eVy, (Pr(wn), @) =0.
Then, we can write:

(Pr(W), @) = (Wn(Wn), @4) = (Pa(W), @p) — (P (W), @) = (P — ¥)(W), @) (8)
For the a priori analysis, we assume that the solutions wand w* are sufficiently regular:

weVnc®, wevnd,
and that we have an interpolation operator:

I : VﬁCO—>Vh.

2.2. A priori estimation

We start from a functional defined as:
jw) = (g,w),
where g is a function of V. Our objective is to estimate the following approximation error on the functional:
o =j(w) —j(wn),
as a function of continuous solutions, of continuous residuals and of discrete residuals. The error dj is split as follows:
9 =j(w) —j(wh) = (&, W — IIyw) + (&, [TnW — Wh).

§j is now composed of an interpolation error and of an implicit error which involves only discrete terms. Let us introduce the
discrete adjoint system:

0¥
W;; € VhaV(//h € Vh7 (TV\/’] (th)l//I‘HW;x) = (g~ l//h)

We can derive the following extension of §j with the choice y, = IIyw — wj:

" oY,
o= (gw-IHw)+ (Wh (Ipw)(ITpw — wy), w,ﬁ).

This new right-hand side second term is simplified by using an extension of ¥,. According to (8), we have:
(Ph(ITyw), w;) — (Pr(wp), wp) = (Ph(ITw), w;) — (Pa(W),w;) + (P — P) (W), W}),

which gives by using a Taylor extension:

oY ,
(Wh(ﬂhw)(ﬂhw - W,J,W,j) = (Ya(IIyw),w}) — (Pr(w), w;) + (Wh — P)(W),W;) + Ry,
where the remainder R; is:
l’X' 4
R = (ath (Iyw)(ITyw — wh),w;;> — (Pn(ITyw), w}) + (Ph(wh), w;). 9)

Thus, we get the following expression of Jj:

o = (& w — Iyw) + (W (ITyw), w;) — (¥n(w), w;) + (P — V)W), w;) + Ry,
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We now apply a second Taylor extension to get:

or,

(Fa(mw).wi) ~ (0. w;) = (0

(w)(ITyw — w), w;‘,) +Ry,
with remainder term

or,

Ry = (Wh(IIyw), w}) — (Pr(w), W) — (E)w

(w)(ITpw — w)w;;). (10)
This implies:

o,

5 = (gw — Myw) + (aw <w><nhw—w>,w:.) + (¥ — ¥)(w), W;) + Ry +Rs.

In contrast to an a posteriori analysis, this analysis starts with a discrete adjoint w;. However, our purpose is to derive a con-

tinuous description of the main error term. Thus, we get rid of the discrete solutions in the dominating terms. To this end, we
re-write ¢j as follows:

01 = (8w~ M)+ G W)W = W) )+ (4 = #YWhW) + Ry + Ra + Dy 4Dy + Dy,

where R; and R, are given by Relations (9) and (10) and we set:

D, — ((0% _ ﬂ) (wW)(Ipw — w),w,§>,

ow  ow

D, = (% (W)(ITyw — w), W}, — W*>>

D; = ((¥h— P)(w),w; —w").

The latter expression of §j can be even more simplified thanks to the continuous adjoint of Eq. (7), leading to:

3 = ((Ph — P)(W), W) + Ry + R, + Dy +D; +Ds. (11)

At least formally, the R; and the Dy, are higher order terms, and the first term in the right-hand side of (11) is the dominating
one. It remains to give the studied context and to exhibit from (11) a formulation specifying the optimal mesh.
It is interesting to compare the output of this a priori analysis'

3~ ((¥n— ¥)(w),w)

with the output of the a posteriori analysis:

o = —((¥n — ¥)(wp), w).
Thus,

(Ph = V) (w),w") = —((¥n — ¥)(Wh), "), (12)

which means that both terms can be transformed into correctors, by approximating continuous ingredients by discrete ones.
The validity of these correctors will hold as far as all the neglected terms are small. This also gives asymptotic estimates of
the error which is also valid when other terms are small. A practical way to verify that these presumed high-order terms are
small is to check by mesh refinement that the numerical convergence order is very close to the asymptotic/theoretical one.
Now, a way to get more easily asymptotic convergence order is to apply a good mesh adaptation refinement. Therefore, we
intend to build such a good mesh adapted refinement by minimizing the above a priori error estimate and to check it numer-
ically. If this goal is achieved, then:

e Eq. (12) holds accurately,
e since other terms are small, both correctors are efficient,

e as the mesh is optimally adapted to minimize the error estimate, the error bound is as small as possible.

To sum up, we get, at the same time, an accurate prediction of the corrector with a rather small and secure incertainty
interval and an efficient corrector.

! Notice that the standard a priori analysis will provide dj ~ ((Ph = P)(w),wy).
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3. The case of the steady Euler equations

In this section, we study how Eq. (11) can be applied in the context of the steady Euler equations. To this end, we restrict
to a particular discretization of these equations and we consider a variational analysis.

3.1. Weak-formulation

We write the steady Euler equations as follows in the computational domain Q c R3:
YW)=V. -FW)=0in Q,

where W ="'(p,pu,pv,pw,pE) is the vector of conservative variables. F is the convection operator
F(W) = (F1(W), Fa(W), F3(W)) with:

pu pv pw
pu? +p puv puw
F1(W) = puv . FaW)y=| p2+p |, Fs(W)= pvw
ouw pUW pw? +p
(PE+p)u (PE+p)v (PE+p)w

so that the state equation becomes:

0F1(W)  0F2(W)  0F3(W)

ox ay oz 0,

p,p and E hold respectively for the density, the thermodynamical pressure and the total energy per mass unit. Symbols u, v
and w stand for the Cartesian components of velocity vector u = (u, v, w). For a calorically perfect gas, we have

1
p= - 1)(pE - yplu).
where 7 is constant. A weak formulation of this system writes for W € V = [H'(2)]’ as follows:
YoeV, (YW), qS):/¢V-}‘(W)d9—/¢7—‘(W).ndI‘:O, (13)
Q r

where I is the boundary of the computational domain @, n the outward normal to I and the boundary flux 7 contains the
boundary conditions. Eq. (13) will play the role of Eq. (6) of the abstract analysis of the previous section.

Eq. (13)is discretized into a vertex-centered formulation apply to unstructured meshes. Let H be a tetrahedral mesh of Q.
We denote by Q, and I', the linear approximate of Q and I' defined by . Let us introduce the following approximation
space:

Vi = {¢n € VNC|¢pyy is affine VK € H}.
The interpolation operator of the previous section is chosen as the usual P! operator:
M, : VNe® -V, such that T, o(x;) = @(x:),

for all vertices x; of H. The weak discrete formulation writes:
W € Vie (PaWa) ) = [ 607 F, (W) a2~ [ 9 Fu(Wa) -m i =0, (14)
[oN Ty

with F), = I,F and Fj, = II,F. Taking as in (14) the P'-interpolation of the fluxes F as discretisation principle, produce a
finite-element scheme which is identical to the central-differenced finite-volume scheme built on the so-called median dual
cells, built around vertices by limiting them by plans through mid-edges, face centroids, element centroids. In practice, this
family of mixed-element-volume schemes cannot be used in a non-dissipative purely centered version. In [14,44], MUSCL
versions are described and analysed. We shall recall in Section 6 some features of these schemes which will be used in
the numerical experiments. A proof that the abstract analysis of Section 2 applies to these schemes with neglectible remain-
ders has not yet been obtained. However, we shall apply it anyway. The scheme under study is then enriched with artificial
stabilisation terms, we denote this as follows:

Vo € Vi, /Q 6V - Fn(Wi) dg,ﬁ/r éu Fn(Wy) -ndrl =7/Q b Da(Wh)d Q.
h h h

According to [44], the diffusion term is of higher order as soon as it is applied to the interpolation of a smooth enough field W
on a sufficiently regular mesh:
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dnDR(Wh)dQy| < BK(W)|oy]2.

Q

As a result, the dissipation term will be neglected in the same way we neglect the remainders R; and Dy of Relation (11). In
the case of a flow with shocks, we have chosen to follow the strategy of the Hessian-based study in [43] which consists in
avoiding to introduce the error term from artificial dissipation.

3.2. Approximation error estimation

Returning to the output functional j(W) = (g, W) and according to Estimate (11), the main term of the a priori error esti-
mation of ¢j becomes:

oj = (8, W —Wy) ~ ((¥n — P)(W), W),
where W™ is the continuous adjoint state, solution of:

oY .
w8

Using the exact solution W in Eqgs. (13) and (14) while neglecting the dissipation Dy, leads to:

EW-Wy)~ [ W (V-F(W)=V-FW)dQ, — | W (F,(W) - F(W))-ndl}.

Q Iy

By integrating by parts the previous estimate, it comes:

EW-Wy~ [ VW (FW)-F(W))d2,— [ W (FW)—Fn(W)) -ndl},

Joy STy
where fluxes F are defined by:
FW)-n=FW)-n-F(W)-n.

Using the definition of 7, and 7, we get:

0j ~ VW (F(W) - Iy FW))dQy — [ W(F(W) — I, F(W))) -ndly. (15)
Sy Iy
We observe that this estimate of j is expressed in terms of interpolation errors for the fluxes and in terms of the continuous
functions W and W".

3.3. Error bound with a safety principle

The integrands in (15) contain positive and negative parts which can compensate for some particular meshes. In our strat-
egy, we prefer to avoid these parasitic effects. To this end, all integrands are bounded by their absolute values:

&Wnr-W)< /Q VW |F(W) — T F(W)|d€, +/F (W|(F(W) — T, F(W)).n|dD,. (16)
h h
In other words, we prefer to locally over-estimate the error.

4. Error model minimization

Starting from Bound (16), several options are possible to derive an optimal mesh for the observed functional. A first one
consists in estimating the right-hand side of (16) for each element then comparing it to a threshold value to conduct refine-
ment. As already stated in the introduction, this method is by nature isotropic. In addition, this process is equivalent to the
equi-distribution principle which is similar to a L norm error control. A weakness of a L norm error control is that small
scales variations of (16) are ignored while strong variations regions are highly refined. This leads to a non optimal distribu-
tion of the degrees of freedom to capture all the scales of the solution [3,43]. A second method is to derive local mesh oper-
ators (smoothing, swaps, collapse,. ..) that are tried and applied only when they decrease the value of the right-hand side of
(16), see [38]. However, as in the previous choice, this method consists in a local refinement and can only converge to a local
minimum. Moreover, it corresponds to a steepest descent method which has a very poor convergence property. The common
point of both approaches is to work on the discrete mesh. It seems particularly tedious to derive well-posed numerical oper-
ators directly on discrete meshes to decrease the error on a functional. This is even more complicated when trying to gen-
erate anisotropic meshes.

To avoid this, we propose to work in the continuous mesh framework by adopting a completely continuous standpoint,
which is made easier thanks to the a priori estimate. It allows us to define proper differentiable optimization [1,7] or to use
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the calculus of variations that is undefined on the class of discrete meshes. This framework lies in the class of metric-based
methods. Consequently, every mesh generator which is able to deal with a metric field can be utilized whatever the meshing
technique it uses: Delaunay, local Delaunay, local refinements,. . . Note that a lot of adaptive mesh generators are now able to
interpret this metric concept. Let us mention [22] for discrete surface mesh adaptation and [11,13,17,26,37,39,45,51] in 3D.
Working in this framework enables us to write Estimate (16) in a continuous form:

(& Wa ~ W) ~ M) = [ [FW'||F(W) = mur(W)ld@ + [ (W' [[(F(W) = m (W)l (17)

where M = (M(X)),.,, is a continuous mesh defined by a Riemannian metric space and 7, is the continuous linear interpo-
late defined hereafter. We are now focusing on the following (continuous) mesh optimization problem:

FindM,,; = Argminy E(M). (18)

A constraint is added to the previous problem in order to bound mesh fineness. In this continuous framework, we impose the
total number of nodes to be equal to a specified positive integer N. We now detail the continuous mesh and continuous inter-
polation framework.

4.1. Continuous mesh model

A continuous mesh M = (M(X)),, of Q is a Riemannian metric field [10]. For all x of Q, M(X) is a symmetric tensor having
(4(X))i.13 as eigenvalues along the principal directions R(X) = (Vi(X)),_; 3. Sizes along these directions are denoted
(hi(X));_1 3 = (47*(X))i_y 5- With this definition, M admits the more practical local decomposition:

M(X) = d° () R(X) ri(x) “R(X),

where

o the node density d is equal to: d = (h; hzh;)’1 = (111213)% = /det(M),
o the three anisotropic quotients r; are equal to: r; = hf’(hlhzh3)’1

The anisotropic quotients represent the overall anisotropic ratio of a tetrahedron taking into account all the possible
directions. It is a complementary measure to anisotropic ratio given by max;(h;)/min;(h;). By integrating the node density,
we define the complexity C of a continuous mesh which is the continuous counterpart of the total number of vertices:

_ /!2 d(x) dx = /Q Jdet(M(x)) dx

This real-value parameter is useful to quantify the global level of accuracy of the continuous mesh M = (M(X)), .

It has been shown in [42] that M defines a class of equivalence of discrete meshes. The equivalence relation is based on
the notion of unit mesh with respect to M. A mesh # is unit wih respect to M when each tetrahedron K € H defined by its list
of edges (e;);_, ¢ verifies:

. 1

Vie[1,6], Clu(e)e |—,

16 tue)e |5

A classical and admissible value of « is 0.8. The length of an edge ¢,,(e;) and the quality of an element Q,,(K) are integrated
to take into account the variations of M in Q:

36 K, /
K 0.1], with K|, = [ \/det(Mm
QK =3 g s el01) with ik = [
and (u(e) = / \Jtab M(a + tab) ab dt, with e; — ab.
Jo

This model is also particularly well suited to the study of the interpolation error. Indeed, there exists a unique continuous
interpolation error that models the (infinite) set of interpolation errors computed on the class of unit meshes. See [42]
for the proof along with equivalence between discrete and continuous formulations. For a smooth function u, the continuous
linear interpolate 7, u is a function of the Hessian H, of u and verifies:

3
(U — Tp) (X) = llotrace( ()|H()\M’%(x)>=11—0 XS r(x)Fvi(x) [Hu(X)| Vi(X), (19)

i=1

\/5} and Q,(K) € [, 1] with o > 0.
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where |H,| is deduced from H, by taking the absolute values of its eigenvalues. 7, replaces the discrete operator II; in this
continuous framework. Note that (19) does not require any hypothesis linking u and M as, for instance, any alignment
condition.

Relation (19) provides a point-wise estimation of the continuous interpolation error. Now, it is then possible to set the
global optimization problem of finding the optimal continuous mesh minimizing the L norm of the continuous interpolation
error:

1
P
Find M,,: = Argminy, (/ lu — au dQ) )
Q
under the equality constraint C(M) = N. This problem can be solved analytically by a calculus of variation and an analytical

expression of the optimal continuous mesh can be exhibited [43]. The solution is unique. The same reasoning as [43] can be
applied for the three following particular cases.

4.2. Weighted interpolation error

Let u be a twice continuously differentiable function and g be a strictly positive function. We consider the following opti-
mization problem in the continuous mesh framework:

Find My = ArgmingEwg (M) with E,g (M) = / glu - myu|dQ,
Q

under the equality constraint C(M) = N. The continuous interpolation error related to continuous mesh M, can be expressed
(up to a constant negligible thanks to the constraint C(M) = N) in terms of the Hessian H,, of function u, see Eq. (19):

3
Evge(M) = /Q g <Zhi2tvi|H“vi> do.
i=1

This functional can be reformulated by using the anisotropic quotients r; and the density d of M:

N 3
EueM) = [ gad (} iy, |Hu|vi> do. (20)
i=1

Note that the weight g does not affect the anisotropy contained in the functional

3.2
(Z r; Vi |Hu|vi> ,
i=1

which can be minimized locally in an independent manner. Consequently, following the reasoning of [43] used for Hessian-
based mesh adaptation, M must be aligned locally with the eigenvectors of H, and the anisotropic quotients are equal to the
anisotropic quotients of H,. At optimum, it simplifies to:

3, )
(Z ritv; |Hu|vi> = 3 det(|Hy|)3. (21)
i=1

As a consequence, the weighting influences only the density of the optimal metric. For a variation éd such that |, éd = 0, we
get

/g d 3 det(|H,|)5od = / d~ det(g |H,|)*sd = 0.
Q Q

This means that the above integrand is equal to a constant C. The value of C is deduced from the constraint C(M) = N. Finally
we get the following point-wise expression of the optimal continuous mesh My = (Mg (X))geo:

1
Mugi(g,u) = D(g, u) det(g [Hu[) >g |Hul,
where D(g,u) is given by:

Dig.) =N [ (dertglHu))?)

4.3. Sum of interpolation errors

We now prove that the previous variational calculus extends to a linear combination of interpolation errors. In Hessian-
based mesh adaptation, taking into account several interpolation errors in an anisotropic way is difficult. Practically, this is



A. Loseille et al./Journal of Computational Physics 229 (2010) 2866-2897 2875

done by intersecting several metric fields as in [3]. However, in many cases the two criteria are not enough compatible and
this results in poor anisotropy. In addition, the intersection procedure often relies on simultaneous reduction which is not
well-posed as soon as more than two metric fields are intersected and tends to result in an isotropic metric field. We specify
in details how the same issue is solved in the goal-oriented case under study.

Let u, v,o0 > 0 and p > 0 be four twice continuously differentiable functions. We aim at finding the metric which opti-
mizes the L' norm of the weighted sum of interpolation errors:

Find M, = Argminy, Es;, (M),
with

Eqm(M) = / oju—myuldQ+ / Blv — mpv|dQ,
Q Q

under the constraint C(M) = N.

It can be shown that minimizing E,, is equivalent to minimizing a single interpolation error of a function having as Hes-
sian the linear combination «|H,| + f|H,|, where |H,| and |H,| are the absolute value of the Hessians of u and ». Indeed, using
the definition of the continuous interpolate, we get:

3 3 3
2 2 2
ofu = Tptt] + Blo = Tp o] = 0> b7 VilHu|Vi+ B Y h; il Hy[vi = > i i (aHu| + BIH,|) Vi
i1 i1 i-1
It remains to apply the same type of calculation as in the previous section. The optimal continuous mesh
Mum = (Msum(X))xeo 1S given by the following point-wise optimal metric:

Maun(2,u, B, v) = D(t,u, B, v) det(o [Hy| + B|Ho|) (et [Ha| + BIHo ),
where D(o, u, B, v) is given by:

_2
3

Do f, v) = N} < [ detalt+ ,;|H,,|>%>
Q

4.4. Mixing boundary and volume error contributions

We consider now an optimization problem involving at the same time a volume interpolation error term and a surface
interpolation error term. Let u and i be two functions that are defined on Q and I' = 92, respectively. The function # is sim-
ply the trace of u on the boundary. The need of considering a surface error term is that the trace of the optimal volume metric
is not optimal on the surface. In other words, even if i is the trace of u on I', the optimal metric deduced from  is not the
trace of the optimal metric deduced from u.

We recall that the projection of a 3D Hessian H, of u on a surface element with an orthonormal basis (s;,s;) writes:

a ] 'siHys1 'siHys;
ts;Hys, fs;Hysy )

0=
As 3D and 2D Hessians are not necessarily correlated, we choose to find two independant optimal metrics for the volume and
the surface, respectively.

The optimal solution is then sought as a couple of two 3D metric fields: M, defined in the whole domain Q and M,y
defined only on the boundary I'. M,y is intended to control the interpolation error on the boundary with respect to , con-
sequently, only two principal directions of My, are of interest. Indeed, along the normal to the boundary, no interpolation
error is committed. Therefore, the following point-wise decomposition of M,; = (M (X))yco iS used:

-2

Moy = (0,5) (” . f) ‘n,s) (22)

where n is the unit normal to the boundary, s = (s, ;) stands for two orthonormal vectors lying in the orthogonal plane to n
and Mg,y is a 2D metric. The initial unknown M, is replaced by the reduced one M, in the analysis. The parameter hyq is
a sufficiently large user-defined real value. This choice has no particular consequence on the final solution as a regularization
process will be applied between the volume and the surface metrics, as explained hereafter. We can now state the optimi-
zation problem in its reduced form.

We consider g and g two positive functions. The problem reads:

Find (M1, Mys) = Argminy, g Equrp (M, M),

with
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Equr(M, M) = / glu — 1 u|dQ + / glu — n;uldr,
Q r
under the constraint
C(M) +C(M) = N.
We recall that the interpolation error in the volume (resp. on the surface) for a function u (resp. it) of Hessian H, (resp. Hy)
with respect to a continuous mesh M (resp. M) is given by:

3
2
|u— 1| = E h; i |Hy| Vi,
i=1

and respectively:

:\
s\

=

-

=
<\
I
<

where v; and v; are the principal directions of volume metric M and of surface metric M and, h; and h; are the mesh size in
these directions.
Eq.y is then expressed in function of Hessians H, and Hy:

Equrs(M,M) = 3 / g(d det(|H,))})da + 2 / g(d" det(F,)})dr, (23)
Q r

under the constraint

/d+/a:N

Q r

The Euler-Lagrange optimality condition associated with (23) writes:

/gdet Ha|)*d 35d+/gdet Ha|)*d25d = 0, (24)
where functions (6d, éd) satisfy:

/5d+/58:0.
JQ JI

This still holds if the variation dd is perturbed by any éd’ of zero integral on Q. Thus:
/gdet Hy|)dod +/gdet Hy|d 3bd+/gdet (Ha|)d-20d = 0,

it results:

5

/gdet Ha|) d 35d =0,

with the constraint

/ od = 0.
Q

Then, there exists a constant C such that:

gdet(H,)}d3=C = d=C3g det(Hi|)* (25)
We apply the same argument to the surface term. Then, there exists a constant C such that:

gdet(|H, |) d?=C = d=C1ghdet(H, \) (26)

It remains to satisfy the constraint requiring the total number of vertices to be equal to N. This gives a relation between C and
C:

c / g det(|Ha|)} + T4 / g det([Hy|)* = N.
Q

To complete the identification of the optimal solution, we observe that the following couple (5d, éd) is admissible:

= ()
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since

/5d+/5?1=171=0.
JQ JI

We introduce it in Relation (24). Using (25) and (26), we get a second relation between C and C:

C-C=0.

Therefore, C and C are the solutions of the nonlinear algebraic problem.
aC3+bCI=N
C=C

with a = /g% det(|Hul)?,
Q

and b — / gt det(|H|)*. (27)
r

This ends the definition of the optimal volume and surface metrics. Finally, the global optimal metric Moy = (Mop¢(X))ycq 1S
defined by:

Mvol(x) forxeQ

Mopi(X) = {
Mypoi(X) N Mys(X) forxerl

where Mg, is defined by Relation (22). The metric intersection M, N Mgy is to be understood as in [3].

The metrics M,y and Mg,s may not be compatible, and practically, a smooth matching is applied between both in the
neighboring of the adapted surface. Note that the curvature of the surface is automatically taken into account by the used
adaptive surface mesh generator [22]. If it is not the case, it is advised to also take into account the surface curvature in the
surface metric definition. Practically, this is done by intersecting a pure geometric surface metric to the current computa-
tional surface metric. We refer to [24] for a geometric error estimate dedicated to surfaces from which a surface metric field
is exhibited.

4.5. Optimal goal-oriented metric
The optimal metric is composed of a volume tensor field M,, defined in 2 and a surface one M,, defined on I'. We have:

o for each vertex x of 2, a 3 x 3 matrix arising from the volume contribution of the sum of the Hessian of each component of
the Euler fluxes weighted by the gradient of the adjoint state:

5
HOO = 3 (1A%, (0) + (A7) (0 + [A2)00). (28)
=1
where
oW oW, oW,
= [ WL () = | L a2 = 2 ).

with W} denoting the j™ component of the adjoint vector W* and H(Fi(Wj)) the Hessian of the j component of the vector
Fi(W),
o for each vertex x of I', a 2 x 2 matrix arising from the surface contribution:

5
Hx) =Y W
j=1

H( S ]—',-(W)-n,)’, (29)
i=1

1

where n = (17,13, n3) is the outward normal of I'.

The standard L' norm normalization is then applied independently on each metric goal oriented (“go”) tensor field:
Mgo(X) = C det(|H(X))) 3[H(X)] and  Mgy(x) = C det([H(x)) *H(x)|. (30)

Constants C et C depends on the desired complexity N. Their explicit values are given by the solution of non-linear Problem
(27). Note that the metric Mg, (X) is 2D and needs to be transformed onto a 3D metric prior to the intersection with M, (X) to
get the final goal-oriented metric. This is done by setting an hm. size along the normal direction to the surface in Mg, (x)
leading to Mgqs. Finally, the global optimal continuous mesh Mgy = (Mop(X))y.p is defined by:
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Mpgo(X) forxe Q

Mope(X) = { Mego(X) N Mo (X) forx e I’

31)

The continuous problem (18) has been solved from an explicit optimality condition producing the optimal metric field as a
function of state and adjoint. In practice, it remains to approximatively solve the coupled system of state, adjoint, and mesh-
optimality. This is done with a goal-oriented adaptive loop which we describe in Section 5.

4.6. About mesh anisotropy

In three dimensions, mesh anisotropy can be quantified by two notions: the anisotropic ratios and the anisotropic quo-
tients. We first recall both notions and how they are evaluated. Deriving these quantities for an element relies on the fact
that there always exists a unique metric tensor for which this element is unit. If My denotes the metric tensor associated
with element K, solving the following linear system provides Mjy:

Gy (@) =1
ORS:
Gy (€6) =1,

where (e;),_, ¢ is the edges list of K and 5,2,\/1,( (e;) = 'e; My e;. (S) admits a unique solution as soon as the volume of K is not zero.
Once My is computed, the anisotropic ratio and the anisotropic quotient associated with element K are simply given by

max h; max h?

and quo = Tl

min /;
1

ratio = . —
max/; minh;
1 1

where (4;);_, ; are the eigenvalues of M and (h;),_, ; are the corresponding sizes. The anisotropic ratio stands for the max-
imum elongation of a tetrahedron by comparing two principal directions. The anisotropic quotient represents the overall
anisotropic ratio of a tetrahedron taking into account all the possible directions. It corresponds to the overall gain in three
dimensions of an anisotropic adapted mesh as compared to an isotropic adapted mesh. The gain is of course even much greater
when compared to a uniform mesh.

5. Adaptive strategy

The adaptive strategy for the proposed goal-oriented mesh adaptation is quite similar to any anisotropic metric-based
mesh adaptation. As both the solution and the mesh are changing during the computation, a non-linear loop is set up in or-
der to converge toward a fixed point for the couple mesh-solution. A sketch of the algorithm for steady problems is depicted
in Fig. 1. From an initial couple mesh-solution (H,, Sp), it is composed of the following sequences. At step i, the flow is first
converged on the current mesh H; to get the solution &;. Then, a metric tensor field M; is deduced from (H;, S;) thanks to an
anisotropic error estimate. The latter is used by the adaptive mesh generator which generates a unit mesh with respect to
M,;. The previous solution is then linearly interpolated on the new mesh. This procedure is repeated until convergence of the

(HO% S(()))
_ | Interpolate Solution
< S0
(74:, ) |
7
(Hiv1,Si, Hi)
v
Compute Solution Generate Mesh
Sj, HH»I
3
(Hi, M;)

Compute Metric

;l

(H:,5:) | M;

\/

Fig. 1. Adaptive loop for steady flow simulations. #; is the ith mesh, S; the ith solution and M; the metric computed from the couple (7;, S:).
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couple mesh-solution. We refer to [43] for more details. We now investigate the differences when dealing with the adjoint-
based anisotropic error estimate. The main modifications concern the flow solver and the remeshing stage.

In this section, the following notations are used. # denotes the mesh of the domain Q,, 9+ the mesh of the boundary I', of
Qp, Wy, is the state provided by the flow solver and j(W,) the observed functional defined on y C Q.

5.1. Computing the goal-oriented metric

The optimal metric found in Section 4 defined by Relations (28)-(31) is function of the adjoint state, the gradient of the
adjoint state and the Hessian of the Euler fluxes. In practice, these continuous states are approximated by the discrete states
and derivative recovery from discrete states at each vertex of the mesh . The discrete adjoint state W;, is taken to represent
the adjoint state W*. The gradient of the adjoint state VW" is replaced by VxW,, and the Hessian of each component the flux
vector H(F;(W)) is obtained from Hg(F;(W;)). Hg stands for the operator that recovers numerically the second order deriv-
atives of an initial piecewise linear by element solution field. In this paper, the recovery method is based on the Green for-
mula. Its formulation along with some comparisons to other methods is available in [4].

5.1.1. Flow solver and adjoint state
As compared to Hessian-based mesh adaptation, the new step in the solver is the resolution of the linear system providing
the adjoint state:

AZW;; =&hn>

where g, is the approximated Jacobian of j(W}) with respect to the conservative variables vector W, and W; is the adjoint
state. A;, is the adjoint matrix of spatial order one deduced by linearizing the numerical scheme. A; has been developed using
Automatic Differentation tools as in [32,34]. A; is a sparse matrix composed of 5 x 5 blocks. If we assume that the 3D mesh is
composed of N vertices, the number of non zero block entries is given by N + 2 N,, where Ne is the number of edges of . In
3D, N, can be approximated by a safe upper bound 8 N (6 or 7N is usually observed practically), thus the size of the matrix is
approximately 425 N. Storing this matrix in double precision for a mesh composed of one million vertices requires about
3.3 GB of memory.? The memory cost is even worse depending on the preconditioning technique. In our case, an incomplete
BILU(0) preconditioner is used [49]. This choice doubles the memory cost. This preconditioner is jointly used with an iterative
solver as GMRES [49]. With this strategy, the adjoint state W; is converged within 10 iterations with a residual of 10™° for a
1 million vertices mesh. The CPU spent to solve the adjoint system is less than 2 min on a Intel Core 2 at 2.8 GHz. We mention
that other techniques to solve this system exist and seem to be as efficient while requiring less memory, see [40].

Once W is computed, its point-wise gradient VW, is recovered by using a L? projection from the neighboring element-
wise constant gradients [4]. We summarize the final couples of variables made available by the flow solver:
oW, oW, W,
ox 7 9y ? 0z

e the gradients of the discrete adjoint state ViWj = (
(F1(Wh), Fo(Wy), F5(Wy)). Each entity is of size N x 5,
e the discrete adjoint state W}, associated with the discrete boundary fluxes Z(W;) -n on 7.

) associated with the discrete fluxes vector

For a one million vertices mesh, storing all these couples of fields requires less than 30 MB which is negligible with re-
spect to the adjoint matrix size.

As regards the approximation scheme implemented in our in-house flow solver Wo1lf, we refer to [4] for a complete
description. To give a brief overview, the Euler system is discretised by means of a vertex-centered finite volume scheme
on unstructured tetrahedral meshes. In this article, we use the HLLC approximate Riemann solver to compute the numerical
flux. The high-order scheme is derived according to a MUSCL type method using downstream and upstream tetrahedra. An
high-order scheme is deduced by using upwind and downwind gradients leading to a numerical dissipation of 4th or 6th
order. As it, the previous MUSCL scheme is not monotone and so it needs to be limited to guarantee the TVD property of
the scheme. The considered limiter is a generalization of the Superbee limiter with three entries. The time integration is
an explicit algorithm using a 5-stage, 2-order strong-stability-preserving (SSP) Runge-Kutta scheme that allows us to con-
sider a CFL coefficient up to 4. With these features, the solver is conservative, positivity preserving and monotone.

5.1.2. Mesh adaptation

Goal-oriented mesh adaptation requires to adapt the surface mesh of the surface y on which the functional is observed.
This standpoint is needed in order to ensure a valid coupling between the volume mesh and the surface mesh. This constraint
implies numerous complications for the re-meshing phase. In our case, a global re-meshing is carried out after re-meshing
the surface y. We use Yams [22] for the adaptation of the surface and an anisotropic extension of Gamhi c [26] for the volume
mesh. When the surface is not adapted, we use Mmg3d [17]. In 2D, the mesh adaptation is also done by using Yams.

2 The matrix memory requirement can be halved by storing it in simple precision.
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6. Numerical examples

Numerical experiments are carried out in 2D and 3D on several observation functionals. The efficiency of the proposed
approach is proved by confronting numerical results to wind-tunnel experimentations on a simple axisymmetric and on a
wing-body geometries. Then, drawbacks and advantages of the adjoint-based and the Hessian-based mesh adaptations
are discussed on several aeronautics flows: the high-fidelity prediction of pressure signature arising during supersonic
flights, a challenging computation of the flow around a F15 fighter with the Quiet Spike concept attached [35] and the vor-
ticity prediction in the wake of a transonic flight for a Falcon business jet.

6.1. 2D example: a half-scramjet

In this 2D example, we emphasize the ability of the adjoint state to predict flow areas that directly impact the observed
functional. We consider an internal flow on a scramjet geometry at Mach 3. The density is observed on the bottom half of the
output of the scramjet as illustrated in Fig. 2(left). The functional is given by:

-3 (558 0

This choice is particularly interesting as the trailing edges (just before the output) create contact discontinuities that are gen-
erally difficult to capture automatically. To illustrate this complexity, the flow has been computed on an uniform mesh of
about 150,000 vertices. In the results depicted in Fig. 2(right), we show that contact discontinuities are not clearly identified.
Moreover, in Hessian based mesh adaptation, capturing a contact discontinuity depends on the specific choice of a variable.
For instance, an adaptation on the pressure variable will ignore contact discontinuities. In the present approach, all the vari-
ables are implicitly taken into account as the adaptation depends on all the flux functions.

In this example, 20 mesh adaptation iterations have been done divided into five steps at a constant complexity:

[1000, 2000, 4000, 8000, 16, 000].

For each step at a constant complexity, four sub-iterations are performed to converge. The final adapted mesh composed of
31,337 vertices and 61,630 triangles, and the final solution are depicted in Fig. 3. We note that areas that do not impact the
functional are coarsely meshed as the shock in the upper part of the scramjet. This is clearly illustrated on the contact dis-
continuities emitted by the trailing edges before the exhaust: if the one issued from the lower trailing edge is accurately
meshed, the upper one is completely diffused since it has no more impact on the functional.

The evolution of the adapted meshes sequence and the associated solutions are shown in Fig. 4. We can see that the cho-
sen areas for refinement by the goal oriented error estimate evolve during the computation depending on the information
currently available. For steps 1,2 and 3, the estimate mainly prescribes a refinement in the upper part of the scramjet. Indeed,
the shock issued from the upper trailing edge is the main contribution to the error in the observed functional. When the con-
tact discontinuity issued from the lower trailing edge becomes well captured (at step 3), the adaptive process specifies the
lower part of the scramjet to be refined for step 4. During step 4, lower and upper parts of the scramjet are similarly refined.
During the last step, the lower part is even more refined in order to increase the accuracy in the observed area, see Fig. 3.

6.2. Supersonic flows for several geometries

The presented goal-oriented mesh adaptation process is first validated by comparing numerical results to wind-tunnel
experiments for a simple axisymmetric body and on a lifting wing-body configuration proposed by NASA to point out that
the method can accurately predict full 3D configurations. Finally, the Hessian-based and the adjoint-based adaptations are
compared for a flow around a supersonic business jet.

Fig. 2. Left, scramjet initial mesh where the grey area represent the surface of observation. Right, density iso-lines for a uniform mesh composed of 150,000
vertices.
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Fig. 3. Global view and close-up of the observation region view of the final adapted mesh and the final density iso-lines. Note that areas impacting the
observation region are accurately meshed resulting in a non-symmetric mesh and solution.

6.3. Comparisons with experiments: an axisymmetric geometry

This section is a validation of the complete adaptive loop: solver and error estimate. To this end, we compare mid-field
signatures obtain by our adaptive method with experimental wind tunnel results. The geometry of the problem corresponds
to the 8th model of [33]. It represents a spike composed of a double cone and is given in inches by the following set of
equations:

r—x ? if 0<x<025I

r o ,/% if 0251<x<075

2 fpoal 2-v2
242V m 2

where [ is the reference length equal to 2 in. (5.08 cm). The geometry is depicted in Fig. 5(left). To simulate the sting support
of the initial wind-tunnel configuration, another cylinder has been added of length 2, see Fig. 5(middle). The computational
domain is a cylinder of diameter 5 m and of length 6 m, see Fig. 5(right). Flow conditions are an angle of attack of 0° and a
Mach number of 1.41. In this example, the flow is computed in the whole domain, i.e., the axis-symmetry of the geometry is
not take into account. Indeed, our wish is to validate the 3D code that is going to be used on 3D fully non axis-symmetric
complex configurations. This test case is also studied in the following references [4,37,55].

The pressure field is observed in the purple area shown in Fig. 5:

jw)=5 [ (B2)

Results are analyzed by extracting the mid-field pressure signatures along lines at various distances under the geometry
from 5 to 20 body lengths. More precisely, we plot:

) if 0.751<x<],
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Fig. 4. Final adapted meshes (left) and associated density iso-lines (right) for the first four steps of the adaptive loop. From top to bottom, a complexity from
1000 to 8000 has been specified.

Fig. 5. Spike geometry (left), final spike geometry with a body added to stimulate the sting (middle), computational domain with the functional observation
area in purple (right).

3 1
Ap = RN'P =P 45 a function of ax =X (R ,
1) p I\

where R the distance to the body. The final signatures are given in Fig. 6. These results correspond to a final adapted mesh
composed of 2 million vertices. Notice that in [33], it is specified that the rounding of the measured pressure peaks in exper-
imental data is believed to be due in part to the wind-tunnel vibrations and the boundary layer effects. Therefore, sharp
shock wave peaks obtained in our simulations, see Fig. 6, are the good answer for our model. For both cases, the agreement
with experimental data is thus excellent.

We can observe that, whatever the accuracy of the mesh, the sharpness and the intensity of the shock waves at R/l = 20 is
preserved (or increased). The shock waves are not diffused at all through their propagation pointing out the drastic reduction
of the flow solver numerical dissipation. This result agrees with the linear supersonic aerodynamic theory where asymptot-
ically it is predicted that the pressure front &p is decreasing proportionally to (R/I)""/2.

e}
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6.3.1. Comparisons with experiments: a lifting wing-body configuration

The aim of this section is to validate the adaptive CFD model on a lifting configuration proposed by NASA and to point out
that the method can accurately predict full 3D configurations. A lifting wing-body produces a flow field disturbance which is
proportional to the degree of lift generated. The typical run time of the goal-oriented adaptive loop is also given.

Model 4 geometry of wind tunnel study [36] is selected. This configuration has also been studied in [55]. This lifting wing-
body geometry consists of an axisymmetric fuselage and a sweep delta wing. The body is a cylinder with a parabolic nose of
length 17.52 cm and diameter 1.08 cm. The fitness ratio (I/d) is thus 16.22. The thickness r of the parabolic nose, of length
7.01, is defined by

r=054-0011(x — 7.01)%

The wing is a 69° leading edge sweep delta wing and double-wedge 5%-thick diamond sections with the ridge line located at
mid-chord. The wings are mounted on the cylindrical portion of the fuselage at the longitudinal plane of symmetry at
x = 8.21 cm. The dimensions of the wing tunnel sting are not provided in [36]. Based on this limited data, the sting is rep-
resented by a simple body of revolution extending four body-lengths behind the aircraft. The sting geometry is exactly the
same as the one in Ref. [55]. The geometry is immersed in a cylindrical domain aligned with the x-axis. The cylinder has a
length of 2.75 m and a radius of 80 cm. This geometry is illustrated in Fig. 7.

The flow conditions are Mach 1.68 and a lift coefficient (C;) of 0.08. The angle of attack was set to match the desired lift
using the reference area equal to 33.106 cm?.

The goal-oriented mesh adaptation considers again the observation of the pressure field but this time on a line y located
on the cylindrical domain in the symmetry plane:

. 71 p_poo g n
1<W>f§// (—pm ) dy.

A mesh gradation of 3.5 has been set with an increase law coefficient of 1.1 [2]. A total of 10 adaptations have been per-
formed split into two steps of five adaptations. At each step, the pair mesh-solution is algorithmically converged at a fixed
complexity. We have fixed a complexity of 15,000 for the first step and 20,000 for the second one. It results in a final adapted
mesh the size of which is almost 76,999 vertices and 378,592 tetrahedra.
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The final mesh and its associated solution, the C, iso-values, are shown in Fig. 8. The flow field is accurately computed
under the lifting geometry in the sense that the solution has not been diffused throughout its propagation in the mid-field
whereas the wake and the upper part of the flow have been poorly capture due to the coarse mesh. With only 76,999 ver-
tices, the shock waves have been propagated down to the domain boundaries at a distance greater than 3-body lengths. This
result points out that the numerical dissipation of the flow solver has been drastically reduced thanks to the anisotropic
mesh refinement. Notice, Fig. 8(right), the strong refinement of the surface mesh on the domain boundary where the obser-
vation line lies.

The accuracy of the obtained solution is deeper analyzed by a comparison to the experimental data of [36]. The mid-field
pressure signature is extracted at 3.6 body lengths, R/L = 3.6, under the geometry at the end of the simulation. The pressure
signal plot, Fig. 9(middle-left), shows very good agreement with the wind tunnel data. As in [55], we observe a discrepancy
between the numerical solution and the experiment for x € [1;1.1] probably due to the inaccurate representation of the body
sting.

This accurate solution has been obtained on a coarse mesh “only” composed of 76,999 vertices. This complexity reduction
is achieved by the refinement of only the region of interest and the mesh anisotropy. The mesh anisotropy is quantified by
the anisotropic ratios and the anisotropic quotients, as explained in Section 4.6. The mean anisotropic ratio is 47 and the
mean anisotropic quotient is 1410. The last quantity signifies that the anisotropy leads to a mesh complexity reduction of
three order of magnitudes as compared to an isotropic adapted mesh. Detailed histograms of the anisotropic ratio and
quotient are given in Table 1.

This simulation is run on a eight-processors 64-bits Mac Pro with an Intel Core 2 chipsets with a clock speed of 2.8 GHz
with 16 Gb of RAM. The CPU time for the whole computation is 23 min. The flow solver consumes 73% of the CPU time, the
adjoint computation is included in this CPU. However, the total CPU time for solving all the adjoint equations is 55 s that
corresponds to about 5% of the total CPU time of the flow solver. Detailed wall-clock time for each step of the adaptation
loop are reported in Table 2. Note that 3 min of CPU times have to be added to the flow solver to compute the initial state
on the initial mesh.

6.3.2. Additional validation

The two additional lift conditions for Mach 1.68 presented in [36] are considered. Exactly the same data are set for each
simulation. The pressure signals predicted for C; =0 and C, = 0.15 at each step of the adaptation loop are shown in
Fig. 9(left). In both cases, agreement with the wind tunnel data is very good. The CFD solutions are obtained with relatively
coarse meshes composed of almost 77,000 vertices and the CPU time is between 23 and 24 min.

Finally, the three additional cases at higher Mach, M = 2.7, for C; equal to 0,0.08 and 0.15 of [36] are run. The comparison
to the wind tunnel data is done by observing the pressure signal at R/L = 3.1. Again, agreement with the experimental data is

Fig. 8. Lifting wing-body. C, iso-values (top) and final adapted mesh (bottom) for two cut planes and the domain surface. Left, the symmetry pl